3.6.85 \(\int \frac {a+b \sec (c+d x)}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\) [585]

Optimal. Leaf size=151 \[ \frac {6 b \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {10 a \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 a \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 b \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {10 a \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}} \]

[Out]

2/7*a*sin(d*x+c)/d/sec(d*x+c)^(5/2)+2/5*b*sin(d*x+c)/d/sec(d*x+c)^(3/2)+10/21*a*sin(d*x+c)/d/sec(d*x+c)^(1/2)+
6/5*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*s
ec(d*x+c)^(1/2)/d+10/21*a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)
)*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 151, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {3872, 3854, 3856, 2720, 2719} \begin {gather*} \frac {2 a \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {10 a \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {10 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 d}+\frac {2 b \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {6 b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[c + d*x])/Sec[c + d*x]^(7/2),x]

[Out]

(6*b*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (10*a*Sqrt[Cos[c + d*x]]*Ellipti
cF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(21*d) + (2*a*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)) + (2*b*Sin[c + d*x
])/(5*d*Sec[c + d*x]^(3/2)) + (10*a*Sin[c + d*x])/(21*d*Sqrt[Sec[c + d*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3854

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Csc[c + d*x])^(n + 1)/(b*d*n)), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rubi steps

\begin {align*} \int \frac {a+b \sec (c+d x)}{\sec ^{\frac {7}{2}}(c+d x)} \, dx &=a \int \frac {1}{\sec ^{\frac {7}{2}}(c+d x)} \, dx+b \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x)} \, dx\\ &=\frac {2 a \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 b \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {1}{7} (5 a) \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)} \, dx+\frac {1}{5} (3 b) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx\\ &=\frac {2 a \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 b \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {10 a \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {1}{21} (5 a) \int \sqrt {\sec (c+d x)} \, dx+\frac {1}{5} \left (3 b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=\frac {6 b \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 a \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 b \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {10 a \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {1}{21} \left (5 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {6 b \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {10 a \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 a \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 b \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {10 a \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.37, size = 99, normalized size = 0.66 \begin {gather*} \frac {\sqrt {\sec (c+d x)} \left (252 b \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+100 a \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+(65 a+42 b \cos (c+d x)+15 a \cos (2 (c+d x))) \sin (2 (c+d x))\right )}{210 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sec[c + d*x])/Sec[c + d*x]^(7/2),x]

[Out]

(Sqrt[Sec[c + d*x]]*(252*b*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + 100*a*Sqrt[Cos[c + d*x]]*EllipticF[(
c + d*x)/2, 2] + (65*a + 42*b*Cos[c + d*x] + 15*a*Cos[2*(c + d*x)])*Sin[2*(c + d*x)]))/(210*d)

________________________________________________________________________________________

Maple [A]
time = 0.10, size = 290, normalized size = 1.92

method result size
default \(-\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (240 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +\left (-360 a -168 b \right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (280 a +168 b \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-80 a -42 b \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+25 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, a -63 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, b \right )}{105 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(290\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(d*x+c))/sec(d*x+c)^(7/2),x,method=_RETURNVERBOSE)

[Out]

-2/105*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(240*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8*a+
(-360*a-168*b)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(280*a+168*b)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(
-80*a-42*b)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+25*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+
1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*a-63*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c
),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/
2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))/sec(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)/sec(d*x + c)^(7/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.83, size = 156, normalized size = 1.03 \begin {gather*} \frac {-25 i \, \sqrt {2} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 25 i \, \sqrt {2} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 63 i \, \sqrt {2} b {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 63 i \, \sqrt {2} b {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (15 \, a \cos \left (d x + c\right )^{3} + 21 \, b \cos \left (d x + c\right )^{2} + 25 \, a \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{105 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))/sec(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

1/105*(-25*I*sqrt(2)*a*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 25*I*sqrt(2)*a*weierstrassP
Inverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 63*I*sqrt(2)*b*weierstrassZeta(-4, 0, weierstrassPInverse(-4,
0, cos(d*x + c) + I*sin(d*x + c))) - 63*I*sqrt(2)*b*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x
+ c) - I*sin(d*x + c))) + 2*(15*a*cos(d*x + c)^3 + 21*b*cos(d*x + c)^2 + 25*a*cos(d*x + c))*sin(d*x + c)/sqrt(
cos(d*x + c)))/d

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {a + b \sec {\left (c + d x \right )}}{\sec ^{\frac {7}{2}}{\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))/sec(d*x+c)**(7/2),x)

[Out]

Integral((a + b*sec(c + d*x))/sec(c + d*x)**(7/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))/sec(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)/sec(d*x + c)^(7/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {a+\frac {b}{\cos \left (c+d\,x\right )}}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{7/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b/cos(c + d*x))/(1/cos(c + d*x))^(7/2),x)

[Out]

int((a + b/cos(c + d*x))/(1/cos(c + d*x))^(7/2), x)

________________________________________________________________________________________